On a Functor for Probabilistic Bisimulation and Preservation of Weak Pullbacks
نویسنده
چکیده
The preservation of weak pullbacks is studied for a functor M 1 on the category UMS of ultrametric spaces and nonexpansive mappings. The functor M 1 associates with an ultrametric space its collection of Borel probability measures with compact support. By application of the Max-ow Min-cut Theorem of graph theory a mediating morphism for a weak pullback diagram can be constructed in SET. It is shown that the functor M 1 as functor from UMS to SET preserves weak pullbacks. A possible solution for the preservation of weak pullbacks by M 1 as UMS-functor is indicated.
منابع مشابه
The Many-valued Coalgebraic Cover Modality
The aim of Coalgebraic Logic is to find formalisms that allow reasoning about T-coalgebras uniformly in the functor T. Moss' seminal idea was to consider the set functor T as providing a modality ∇ T , the semantics of which is given in terms of the relation lifting of T. The latter exists whenever T preserves weak pullbacks. In joint work with Marta Bílková, Alexander Kurz and Jiří Velebil, we...
متن کاملRelation Liftings on Preorders and Posets
The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares....
متن کاملSimulations and Bisimulations for Coalgebraic Modal Logics
Simulations serve as a proof tool to compare the behaviour of reactive systems. We define a notion of Λ-simulation for coalgebraic modal logics, parametric in the choice of a set Λ of monotone predicate liftings for a functor T . That is, we obtain a generic notion of simulation that can be flexibly instantiated to a large variety of systems and logics, in particular in settings that semantical...
متن کاملLax Extensions of Coalgebra Functors
We discuss the use of relation lifting in the theory of setbased coalgebra. On the one hand we prove that the neighborhood functor does not extend to a relation lifting of which the associated notion of bisimilarity coincides with behavorial equivalence. On the other hand we argue that relation liftings may be of use for many other functors that do not preserve weak pullbacks, such as the monot...
متن کاملFunctors for Coalgebras
Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the functor F which associates a set X with the set F(X) of all filters on X. It turns out that this functor preserves weak pullbacks, yet does not preserve weak generalized pullback...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998